Nonlinear Vibration Control for an Aircraft Vertical Tail by Using Operator-based Estimation
نویسندگان
چکیده
In this paper, vibration control is performed by using piezoelectric elements which are one of the smart actuator. An operator-based robust nonlinear control system by using robust right coprime factorization approach and a nonliliner property of hysteresis model is proposed. Considering the hysteresis in the piezoelectric actuator, assuming that an aircraft vertical tail is forced vibration model the response of the plate. Finally, the effectiveness of the proposed nonliner control system is confirmed by simulation results.
منابع مشابه
Optimized Fuzzy Logic for Nonlinear Vibration Control of Aircraft Semi-active Shock Absorber with Input Constraint (TECHNICAL NOTE)
Landing impact and runway unevenness have proximate consequence on performance of landing gear system and conduce to discomfort of passengers and reduction of the pilot’s capability to control aircraft. Finally, vibrations caused by them result in structure fatigue. Fuzzy logic controller is used frequently in different applications because of simplicity in design and implementation. In the pre...
متن کاملNumerical Survey of Vibrational Model for Third Aircraft based on HR Suspension System Actuator Using Two Bee Algorithm Objective Functions
This research explains airplane model with two vertical vibrations for airframe and landing gear system. The purpose of this work is to advance vibrational model for study of adjustable vibration absorber and to plan Proportional-Integration-Derivative approach for adapting semi active control force. The coefficients of this method are modified as stated by Bee multiobjective optimization using...
متن کاملOscillation Control of Aircraft Shock Absorber Subsystem Using Intelligent Active Performance and Optimized Classical Techniques Under Sine Wave Runway Excitation (TECHNICAL NOTE)
This paper describes third aircraft model with 2 degrees of freedom. The aim of this study is to develop a mathematical model for investigation of adoptable landing gear vibration behavior and to design Proportional Integration Derivative (PID) classical techniques for control of active hydraulic nonlinear actuator. The parameters of controller and suspension system are adjusted according to be...
متن کاملMathematical Model and Vibration Analysis of Aircraft with Active Landing Gear System using Linear Quadratic Regulator Technique
This paper deals with the study and comparison of passive and active landing gear system of the aircraft and dynamic responses due to runway irregularities while the aircraft is taxying. The dynamic load and vibration caused by the unevenness of runway will result in airframe fatigue, discomfort of passengers and the reduction of the pilot’s ability to control the aircraft. One of the objectiv...
متن کاملIn-Trim Flight Investigations of a Conceptual Fluidic Thrust-Vectored Unmanned Tail-Sitter Aircraft
The feasibility of using a stand alone Fluidic Thrust-Vectoring (FTV) system for the purpose of longitudinal trim of an unmanned aerial vehicle is the focus of the research presented in this paper. Since the fluidic thrust vectoring requires high pressure secondary air to deflect the engine exhaust gases, this research also provides an analytical toolset for preliminary sizing of a suitable sec...
متن کامل